Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37510052

RESUMO

In view of some recent reports on global wealth inequality, where a small number (often a handful) of people own more wealth than 50% of the world's population, we explored if kinetic exchange models of markets could ever capture features where a significant fraction of wealth can concentrate in the hands of a few as the market size N approaches infinity. One existing example of such a kinetic exchange model is the Chakraborti or Yard-Sale model; in the absence of tax redistribution, etc., all wealth ultimately condenses into the hands of a single individual (for any value of N), and the market dynamics stop. With tax redistribution, etc., steady-state dynamics are shown to have remarkable applicability in many cases in our extremely unequal world. We show that another kinetic exchange model (called the Banerjee model) has intriguing intrinsic dynamics, where only ten rich traders or agents possess about 99.98% of the total wealth in the steady state (without any tax, etc., like external manipulation) for any large N value. We will discuss the statistical features of this model using Monte Carlo simulations. We will also demonstrate that if each trader has a non-zero probability f of engaging in random exchanges, then these condensations of wealth (e.g., 100% in the hand of one agent in the Chakraborti model, or about 99.98% in the hands of ten agents in the Banerjee model) disappear in the large N limit. Moreover, due to the built-in possibility of random exchange dynamics in the earlier proposed Goswami-Sen model, where the exchange probability decreases with the inverse power of the wealth difference between trading pairs, one does not see any wealth condensation phenomena. In this paper, we explore these aspects of statistics of these intriguing models.

2.
Entropy (Basel) ; 25(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37238490

RESUMO

Social inequalities are ubiquitous and evolve towards a universal limit. Herein, we extensively review the values of inequality measures, namely the Gini (g) index and the Kolkata (k) index, two standard measures of inequality used in the analysis of various social sectors through data analysis. The Kolkata index, denoted as k, indicates the proportion of the 'wealth' owned by (1-k) fraction of the 'people'. Our findings suggest that both the Gini index and the Kolkata index tend to converge to similar values (around g=k≈0.87, starting from the point of perfect equality, where g=0 and k=0.5) as competition increases in different social institutions, such as markets, movies, elections, universities, prize winning, battle fields, sports (Olympics), etc., under conditions of unrestricted competition (no social welfare or support mechanism). In this review, we present the concept of a generalized form of Pareto's 80/20 law (k=0.80), where the coincidence of inequality indices is observed. The observation of this coincidence is consistent with the precursor values of the g and k indices for the self-organized critical (SOC) state in self-tuned physical systems such as sand piles. These results provide quantitative support for the view that interacting socioeconomic systems can be understood within the framework of SOC, which has been hypothesized for many years. These findings suggest that the SOC model can be extended to capture the dynamics of complex socioeconomic systems and help us better understand their behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...